451 research outputs found

    Temperature dependence of coherent oscillations in Josephson phase qubits

    Full text link
    We experimentally investigate the temperature dependence of Rabi oscillations and Ramsey fringes in superconducting phase qubits driven by microwave pulses. In a wide range of temperatures, we find that both the decay time and the amplitude of these coherent oscillations remain nearly unaffected by thermal fluctuations. The oscillations are observed well above the crossover temperature from thermally activated escape to quantum tunneling for undriven qubits. In the two-level limit, coherent qubit response rapidly vanishes as soon as the energy of thermal fluctuations kT becomes larger than the energy level spacing of the qubit. Our observations shed new light on the origin of decoherence in superconducting qubits. The experimental data suggest that, without degrading already achieved coherence times, phase qubits can be operated at temperatures much higher than those reported till now.Comment: 4 pages, 4 figure

    State tomography of capacitively shunted phase qubits with high fidelity

    Full text link
    We introduce a new design concept for superconducting quantum bits (qubits) in which we explicitly separate the capacitive element from the Josephson tunnel junction for improved qubit performance. The number of two-level systems (TLS) that couple to the qubit is thereby reduced by an order of magnitude and the measurement fidelity improves to 90%. This improved design enables the first demonstration of quantum state tomography with superconducting qubits using single shot measurements.Comment: submitted to PR

    Transformed Dissipation in Superconducting Quantum Circuits

    Full text link
    Superconducting quantum circuits must be designed carefully to avoid dissipation from coupling to external control circuitry. Here we introduce the concept of current transformation to quantify coupling to the environment. We test this theory with an experimentally-determined impedance transformation of 105\sim 10^5 and find quantitative agreement better than a factor of 2 between this transformation and the reduced lifetime of a phase qubit coupled to a tunable transformer. Higher-order corrections from quantum fluctuations are also calculated with this theory, but found not to limit the qubit lifetime. We also illustrate how this simple connection between current and impedance transformation can be used to rule out dissipation sources in experimental qubit systems.Comment: 4 pages, 4 figure

    Microwave Dielectric Loss at Single Photon Energies and milliKelvin Temperatures

    Full text link
    The microwave performance of amorphous dielectric materials at very low temperatures and very low excitation strengths displays significant excess loss. Here, we present the loss tangents of some common amorphous and crystalline dielectrics, measured at low temperatures (T < 100 mK) with near single-photon excitation energies, using both coplanar waveguide (CPW) and lumped LC resonators. The loss can be understood using a two-level state (TLS) defect model. A circuit analysis of the half-wavelength resonators we used is outlined, and the energy dissipation of such a resonator on a multilayered dielectric substrate is considered theoretically.Comment: 4 pages, 3 figures, submitted to Applied Physics Letter

    Improving the Coherence Time of Superconducting Coplanar Resonators

    Full text link
    The quality factor and energy decay time of superconducting resonators have been measured as a function of material, geometry, and magnetic field. Once the dissipation of trapped magnetic vortices is minimized, we identify surface two-level states (TLS) as an important decay mechanism. A wide gap between the center conductor and the ground plane, as well as use of the superconductor Re instead of Al, are shown to decrease loss. We also demonstrate that classical measurements of resonator quality factor at low excitation power are consistent with single-photon decay time measured using qubit-resonator swap experiments.Comment: 3 pages, 4 figures for the main paper; total 5 pages, 6 figures including supplementary material. Submitted to Applied Physics Letter

    Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements

    Get PDF
    The application of the POLIPHON (POlarization-LIdar PHOtometer Networking) method is presented for the first time in synergy with continuous 24/7 polarized Micro-Pulse Lidar (P-MPL) measurements to derive the vertical separation of two or three particle components in different aerosol mixtures, and the retrieval of their particular optical properties. The procedure of extinction-to-mass conversion, together with an analysis of the mass extinction efficiency (MEE) parameter, is described, and the relative mass contribution of each aerosol component is also derived in a further step. The general POLIPHON algorithm is based on the specific particle linear depolarization ratio given for different types of aerosols and can be run in either 1-step (POL-1) or 2 steps (POL-2) versions with dependence on either the 2- or 3-component separation. In order to illustrate this procedure, aerosol mixing cases observed over Barcelona (NE Spain) are selected: a dust event on 5 July 2016, smoke plumes detected on 23 May 2016 and a pollination episode observed on 23 March 2016. In particular, the 3-component separation is just applied for the dust case: a combined POL-1 with POL-2 procedure (POL-1/2) is used, and additionally the fine-dust contribution to the total fine mode (fine dust plus non-dust aerosols) is estimated. The high dust impact before 12:00UTC yields a mean mass loading of 0.6±0.1gm-2 due to the prevalence of Saharan coarse-dust particles. After that time, the mean mass loading is reduced by two-thirds, showing a rather weak dust incidence. In the smoke case, the arrival of fine biomass-burning particles is detected at altitudes as high as 7km. The smoke particles, probably mixed with less depolarizing non-smoke aerosols, are observed in air masses, having their origin from either North American fires or the Arctic area, as reported by HYSPLIT back-trajectory analysis. The particle linear depolarization ratio for smoke shows values in the 0.10–0.15 range and even higher at given times, and the daily mean smoke mass loading is 0.017±0.008gm-2, around 3% of that found for the dust event. Pollen particles are detected up to 1.5km in height from 10:00UTC during an intense pollination event with a particle linear depolarization ratio ranging between 0.10 and 0.15. The maximal mass loading of Platanus pollen particles is 0.011±0.003gm-2, representing around 2% of the dust loading during the higher dust incidence. Regarding the MEE derived for each aerosol component, their values are in agreement with others referenced in the literature for the specific aerosol types examined in this work: 0.5±0.1 and 1.7±0.2m2g-1 are found for coarse and fine dust particles, 4.5±1.4m2g-1 is derived for smoke and 2.4±0.5m2g-1 for non-smoke aerosols with Arctic origin, and a MEE of 2.4±0.8m2g-1 is obtained for pollen particles, though it can reach higher or lower values depending on predominantly smaller or larger pollen grain sizes. Results reveal the high potential of the P-MPL system, a simple polarization-sensitive elastic backscatter lidar working in a 24/7 operation mode, to retrieve the relative optical and mass contributions of each aerosol component throughout the day, reflecting the daily variability of their properties. In fact, this procedure can be simply implemented in other P-MPLs that also operate within the worldwide Micro-Pulse Lidar Network (MPLNET), thus extending the aerosol discrimination at a global scale. Moreover, the method has the advantage of also being relatively easily applicable to space-borne lidars with an equivalent configuration such as the ongoing Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) on board NASA CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) and the forthcoming Atmospheric Lidar (ATLID) on board the ESA EarthCARE mission.Peer ReviewedPostprint (published version

    Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 Eyjafjallajökull eruption using lidar observations and NAME simulations

    Get PDF
    The Eyjafjallajökull volcano in Iceland erupted explosively on 14 April 2010, emitting a plume of ash into the atmosphere. The ash was transported from Iceland toward Europe where mostly cloud-free skies allowed ground-based lidars at Chilbolton in England and Leipzig in Germany to estimate the mass concentration in the ash cloud as it passed overhead. The UK Met Office's Numerical Atmospheric-dispersion Modeling Environment (NAME) has been used to simulate the evolution of the ash cloud from the Eyjafjallajökull volcano during the initial phase of the ash emissions, 14–16 April 2010. NAME captures the timing and sloped structure of the ash layer observed over Leipzig, close to the central axis of the ash cloud. Relatively small errors in the ash cloud position, probably caused by the cumulative effect of errors in the driving meteorology en route, result in a timing error at distances far from the central axis of the ash cloud. Taking the timing error into account, NAME is able to capture the sloped ash layer over the UK. Comparison of the lidar observations and NAME simulations has allowed an estimation of the plume height time series to be made. It is necessary to include in the model input the large variations in plume height in order to accurately predict the ash cloud structure at long range. Quantitative comparison with the mass concentrations at Leipzig and Chilbolton suggest that around 3% of the total emitted mass is transported as far as these sites by small (<100 μm diameter) ash particles

    Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler

    Get PDF
    Case studies of combined vertical-velocity measurements of Doppler lidar, cloud radar and wind profiler are presented. The measurements were taken at the Meteorological Observatory, Lindenberg, Germany. Synergistic products are presented that are derived from the vertical-velocity measurements of the three instruments: a comprehensive classification mask of vertically moving atmospheric targets and the terminal fall velocity of water droplets and ice crystals corrected for vertical air motion. It is shown that this combination of instruments can up-value the measurement values of each single instrument and may allow the simultaneous sensing of atmospheric targets and the motion of clear air
    corecore